Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis.
نویسندگان
چکیده
Integration of signaling and metabolic pathways enables and sustains lymphocyte function. Whereas metabolic changes occurring during T cell activation are well characterized, the metabolic demands of differentiated T lymphocytes are largely unexplored. In this study, we defined the bioenergetics of Th17 effector cells generated in vivo. These cells depend on oxidative phosphorylation (OXPHOS) for energy and cytokine production. Mechanistically, the essential role of OXPHOS in Th17 cells results from their limited capacity to increase glycolysis in response to metabolic stresses. This metabolic program is observed in mouse and human Th17 cells, including those isolated from Crohn disease patients, and it is linked to disease, as inhibiting OXPHOS reduces the severity of murine colitis and psoriasis. These studies highlight the importance of analyzing metabolism in effector lymphocytes within in vivo inflammatory contexts and suggest a therapeutic role for manipulating OXPHOS in Th17-driven diseases.
منابع مشابه
Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses
While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, usin...
متن کاملImmunoproteasome subunit LMP7 deficiency and inhibition suppresses Th1 and Th17 but enhances regulatory T cell differentiation.
The immunoproteasome generates peptides presented on MHC class I molecules to cytotoxic T cells. ONX 0914 (formerly called PR-957) is a selective inhibitor of the immunoproteasome subunit low molecular mass polypeptide (LMP) 7 (β5i) that attenuates disease progression in mouse models of diabetes, colitis, and arthritis. The aim of this study was to investigate the effect of LMP7-specific inhibi...
متن کاملRetinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression.
The de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhib...
متن کاملIκBNS regulates murine Th17 differentiation during gut inflammation and infection.
IL-17-producing Th17 cells mediate immune responses against a variety of fungal and bacterial infections. Signaling via NF-κB has been linked to the development and maintenance of Th17 cells. We analyzed the role of the unusual inhibitor of NF-κB, IκBNS, in the proliferation and effector cytokine production of murine Th17 cells. Our study demonstrates that nuclear IκBNS is crucial for murine Th...
متن کاملHigh‐dose wogonin exacerbates DSS‐induced colitis by up‐regulating effector T cell function and inhibiting Treg cell
Wogonin exerts anti-tumour activities via multiple mechanisms. We have identified that high-dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveillance. However, wogonin (20-50 μM) ex vivo prevents inflammation by inhibiting NF-κB and Erk signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 198 7 شماره
صفحات -
تاریخ انتشار 2017